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We investigate pair correlations in the two-dimensional Coulomb gas made up 
of two species of point ions carrying electric charges Z le(>0) and Z2e (<0), 
and interaction by the logarithmic Coulomb potential. This system is known to 
be classically stable for couplings F=e2/kBT< Tc=2/IZlZ2l (where T is the 
temperature). Correlations between equally charged ions are shown to be 
greatly modified at short distances, in the range F j2  < F<Fc, due to gradual 
ion "condensation." The usual integral equations for the pair correlation 
functions admit no solutions in that range. Preliminary Monte Carlo 
simulations for the symmetric case (ZI = - Z 2 )  reveal a striking "chemical" 
equilibrium between tightly bound ion pairs and free ions, which is reasonably 
well described by a simple Bjerrum model. 

KEY WORDS: Two-dimensional Coulomb gas; pair correlation functions; 
integral equations; ion pairing; Monte Carlo simulations. 

1. I N T R O D U C T I O N  

Two-d imens iona l  C o u l o m b  systems of charged  par t ic les  in terac t ing  
th rough  a logar i thmic  po ten t ia l  have recent ly a t t r ac ted  much  a t t en t ion  for 
a n u m b e r  of reasons.  The one -componen t  vers ion of  equal ly  charged  po in t  
ions in a uniform neut ra l iz ing  b a c k g r o u n d  is exact ly  soluble  for one par -  
t icular  (nont r iv ia l )  value of  the coupl ing  F = e 2 / k B T ,  namely  F = 2 .  (1) 
Systems of oppos i t e ly  charged  ha rd -co re  ions undergo  a t rans i t ion  f rom a 
h igh - t empera tu re  C o u l o m b  gas phase  to a l ow- t empera tu re  d ipo la r  gas 
phase  at  some dens i ty -dependen t  t empera tu re ;  this is the so-cal led 
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Kosterlitz-Thouless transition, ~2) which is the prototype of a class of phase 
transitions without spontaneous symmetry breaking; the decay of 
correlations changes only from exponential in the high-temperature phase 
to a power law in the low-temperature phaseJ 3) The lattice version of the 
two-component Coulomb gas has been shown to be isomorphous, through 
a duality transformation, to the discrete Gaussian model for the roughen- 
ing transition. (4~ 

In this paper we return to the continuous Coulomb gas of oppositely 
charged point ions (no hard core) for which a number of important results 
are already available. Whereas the stability of three-dimensional Coulomb 
matter requires quantum mechanics (in particular Fermi statistics), ~5) the 
purely classical two-dimensional Coulomb gas is stable against collapse of 
oppositely charged ions pairs above the critical temperature Tc= 
e2/(2kB). (6'7) Moreover, the existence of the thermodynamic limit, and the 
absence of a phase transition for this model above Tc, can be proved 
rigorously3 7'8/ In this work we focus on pair correlation functions, which 
have not been investigated quantitavely so far for this model. In addition, 
while the published literature deals exclusively with the symmetric 
Coulomb gas involving equal numbers of ions carrying opposite charges 
+__ e, we consider explicitly the more general, asymmetric case of ions of dif- 
ferent absolute valences. 

Our interest in the two-dimensional Coulomb gas stems from previous 
work on the strongly coupled electron-proton plasma in three dimensions, 
above the degeneracy temperature of the electrons. ~ This plasma is 
classically unstable against electron-proton collapse at any temperature, 
and in a semiclassical treatment the infinite Coulomb attraction between 
oppositely charged particles is tempered for distances shorter than the de 
Broglie thermal wavelength via the use of effective pair potentials which 
account approximately for quantum diffraction and symmetry effects. (1~ 
The corresponding Hamiltonian is then temperature dependent, and this 
circumstance introduces some ambiguities which are avoided in the 
corresponding two-dimensional model above the critical temperature Tc 
where the pure (logarithmic) Coulomb potential can be used. The 
two-dimensional Coulomb gas allows the physics of ion-electron recom- 
bination near Tc to be studied in purely classical terms. Hence we consider 
the two-dimensional Coulomb gas to be a useful model for an investigation 
of strongly coupled, nondegenerate ion-electron plasma, and in particular 
of strongly magnetized plasmas ~8~ where guiding centers can be looked 
upon, in a first approximation, as infinitely long parallel wires. It is 
interesting to note that the value of the Coulomb coupling constant at the 
two-dimensional collapse temperature, Fc = e2/k8 Tc--2, is typical of the 
couplings achieved in inertial confinement fusion experiments. It is also 
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worth mentioning that much of the simulation work on such dense fusion 
plasmas is carried out with two-dimensional codes. 

The paper is organized as follows. Definitions, sum rules, and general 
properties of pair correlation functions and their relations to ther- 
modynamics are summarized in Section 2. In Section 3 we focus on the 
behavior of pair correlations at short distances and we show in particular 
that correlations between equal charge ions are weakened near the collapse 
temperature due to pair formation. In Section 4 we present some quan- 
titative results for the pair correlation functions obtained from approximate 
theories, and we show the limitations of the standard integral equations. 
Section 5 is devoted to a Monte Carlo study of pair formation near the 
collapse temperature, while concluding remarks are made in Section 6. A 
preliminary account of some of the results of Section 4 has been published 
elsewhere.(tl) 

2. PAIR CORRELATIONS A N D  T H E R M O D Y N A M I C S  

The asymmetric two-dimensional Coulomb gas is made up of two 
species of particles carrying electric charges Z~e (c~ = 1, 2), where e is some 
elementary charge. If n~ = N J S  denotes the number of particles of species 
per unit area, overall charge neutrality requires that 

Zlnl  +Z2n2 = 0  (1) 

If the model is to represent an ion-electron plasma, Z1 > 0 will be the 
(integer) valence of the ions or nuclei while Z2 = - 1  for the electrons. In 
this case the ratio z = IZdZ21 is an integer, and in particular for the sym- 
metric Coulomb gas, z = 1 (e.g., protons and electrons). The total number 
density of the system will be denoted by n = N / S = n l  +n2, and a con- 
venient length scale will be the "ion-disk radius": 

a 1 = (7~nl)  - 1 / 2  ( 2 )  

The bare Coulomb potential due to a charge of species ~ located at the 
origin is, in two dimensions, 

O(~~ = - Z ~  e ln(r/L) (3) 

where L is an arbitrary scale factor which fixes the zero of energy. The 
corresponding potential energy of a pair will be denoted by 

v=~(r)  = Zeetp~~ = Z = e r 1 7 6  (4) 

822/38/5-6-2 
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The canonical partition function of the system reads: 

QN 
='~N =- ( 5 )  NI! N2! ~N1)~N2 

where 2~ is the de Broglie thermal wavelength of spcies e, and QN is the 
classical configuration integral: 

e 2 

Q N = f s "'" Is exp { ~B T ~<~j g~ Zj ln ( r~j L ) } i = 1  f i  d2r ~ 

= sN(1 + FZIZ2/4) L--FNZ,Z2/2 Q*(F)  (6) 

The reduced configuration integral 

s 0- , [ I  dZs, (7) 
i<j i = l  

depends only on the dimensionless Coulomb coupling constant 

C 2 
r =  (8) ksT 

and not on the density; in Eq. (7) the dimensionless integration variables 
are si = ri/S 1/2. The configuration integral is finite as long as 

2 
(9) 

Izxz2l 

i.e., as long as the temperature is above the critical (collapse) value: 

6, 2 

T c  - (1o) 2kBlZiZzl 

Since the dependence on the surface S factors out explicitly in Eq. (6), the 
equation-of-state for F <  Fc is trivially given by O2'6) 

PS = 1 + 1  
Uks----T -~Z, Z2F (11) 

The exact result (11) simply reflects the fact that the density is an irrelevant 
variable for the two-dimensional Coulomb gas. The nontrivial part of the 
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reduced thermodynamic quantities depends only on the single variable F. 
Whereas the density derivatives of the excess free energy F =  - k B T l n  QN 
can all be calculated exactly, like the pressure, the temperature derivatives, 
like the internal energy U or the constant surface specific heat c~, are non- 
trivial quantities, which can only be calculated within some approximation 
scheme, or by computer "experiments." Note that the constant pressure 
specific heat cp is related to c~ by 

cp - c__.__~ = 1 (12) 
NkB 1 + 1Z~ Z2 F 

The microscopic structure of the Coulomb gas is characterized in the usual 
fashion by three partial pair distribution functions g~(r), or equivalently 
by their Fourier transforms, the partial structure factors 

1 
S~(K) = ~ <Pk~P~ > 

= x~ 6~ + x~xa~a(k) (13) 

where 

~ ( k )  = n f eik"h~#(r) d2r 

= 2~n h~(r) Jo(kr)r dr (14) 

hap(r ) : gaB(r)- 1 (15) 

and the x~ are the concentrations x~ = nffn. 
The direct correlation functions c~(r) form an alternative set which is 

very useful in constructing approximate theories of the pair structure; they 
are defined via the usual Ornstein-Zernike (OZ) relations, which read in 
Fourier space: 

~(k)=O~(k)+~O~v(k)x~<~(k  ) (16) 
Y 

The pair distribution functions obey the Stillinger-Lovett sum rules(13): 

27zn ~ x~Z~ h~(r)r dr = -Z~,  
Y 

fo "~ 4Z1 Z2 2~n Z E x~x~Z,Z, h~(r)r ~ dr = k~ 
o: 7 

~ =  1,2 (17a) 

(17b) 
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where kD is the inverse Debye length: 

2ne2 [nlZ~ + n2Z~] 

= -2nnFZ~ Z2 (18) 

Equation (17a) is merely an expression of local charge neutrality around 
an ion of species e. Equation (17b) can be proven in a number of ways. In 
the original derivation (13) the result follows from the perfect screening con- 
dition stating that the inverse static dielectric function 1/e(k) must vanish 
for a conductor in the k ~ 0 limit. The perfect screening condition (17b) 
follows also from a simple assumption concerning the direct correlation 
function c~/~(r). (14) If the latter are separated into their asymptotic part, 
-v~r and their short-range part, c~(r), i.e., in Fourier space 

Z~Zt3 k~ 
O~(k) = Z~Z2 k 2 + a~(k) (19) 

the assumption is that ~ ( k )  is a regular function in the k ~ 0 limit. This, 
combined with the OZ relations (16), leads directly back to Eqs. (17). Very 
recently the perfect screening sum rule (17b) has been proven rigorously on 
the basis of the Born-Green-Yvon hierarchy and a clustering 
assumption/15) More generally these clustering assumptions imply a whole 
set of sum roles involving two-body and higher-order distribution functions 
which must be obeyed by any Coulomb system, and in particular by the 
two-dimensional Coulomb gas. (16) 

A number of thermodynamic properties are expressible in terms of the 
pair functions. The virial theorem in conjunction with the local neutrality 
condition (17a) leads immediately back to the equation of state (11). The 
excess internal energy can be calculated from the standard relation 

U ~X n f u = ~e  2 = ~ ~" x~x~ ~ g~t~(r) v~(r) d2r 
B 

;o o = - ~ ~ x~xeZ~Z~zn h~(r) ln(r/L)r dr 

2 -- - x l Z ~  [hll(X)-2h12(x)+h22(x)] ln(x)x dx 

+ Zf-----~2 In ( L ) (20) 
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where we made repeated use of the global and local charge neutrality con- 
ditions (1) and (17a); x denotes the reduced distance r/a~. Since the 
interactions are purely Coulombic, the excess internal energy can also be 
expressed in terms of the mean electric potential acting on the ions of each 
species. The local excess charge density around an ion of species c~, p~(r), is 
related to the electric potential 0~(r) by Poisson's equation: 

V20~(r) = -2zceo~(r) 

= -2~zne ~ x~ Z~h~(r) (21) 
7 

~,~(r) is the sum of the bare Coulomb potential ~(~~ of the ion at the 
origin and of the potential due to the local charge distribution around that 
ion: 

~ ( r )  = ~(~~ + ~k*(r) (22) 

Equation (23) for u is now rewritten as 

u= l ~ x ~ Z ~  f p~(r) In(r/L) d2r 
2 

l [x ,Z,~*(O)+ x 2 Z 2 ~ * ( O ) ] + - ~ - l n ( L )  (23) 
2e 

after use of Eq. (21) and integration by parts. 
The isothermal compressibility ZT= (•n/OP)r/n is related to the k ~ 0 

limit of the partial structure factors(iT): 

1 
lim (x~xB)- ~ S~z(k) = nkB T)(.T = (24) 
~ o 1 + �88 Z2 

where use was made of the exact equation-of-state (11). The relations listed 
above will be used to calculate thermodynamic properties of the two-com- 
ponent plasma within various approximation schemes (Section 4) and from 
Monte Carlo simulations (Section 5). The symmetric version of the model 
(Z~ = -Z2  = 1) is invariant under charge conjugation; the pair structure is 
then entirely characterized by two correlation functions only, g~ ( r )=  
g22(r) and gt2(r). The symmetric model undergoes a single recombination, 
at F =  2; beyond this value of the coupling constant the pressure of the 
system behaves as that of an ideal gas of N/2 neutral particles composed of 
two oppositely charged ions which have recombined. (6) The asymmetric 
case is more interesting since it leads to several successive recombinations, 
reminiscent of counterion "condensation" in polyelectrolytes. (~s) Consider 
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the case where z = IZ1/Z2[ is integer and choose Z 2 ~- - 1  so that z = Z1; at 
each recombination the valence of the positive ions is reduced by one and 
the total number of negative ions or electrons drops by N,.  The 
equation-of-state is a succession of straight line segments: 

tiP 1 Fz 0 < F < 2  
n 4'  z 

~P z + I - ~ I  F ] 
-7 = 7-7~ 1--~(z-O 

2 2 
- ~  ~ 1 - - - - - -=  < F < z - - - - - = ' z +  1 ~< integer ~ < z  (25) 

In Eq. (25) n denotes the initial total number of particles per unit area, and 
it is assumed that the system is in contact with an infinite heat reservoir 
which can absorb the infinite self-energy of the collapsed ion pairs. The 
situation is illustrated in Fig. 1 for the case z = 4. The extension to rational 
values of z is straightforward. 

P_gLs 
N k~T 

t.0]; 

0.g 

0.0 I.'0 210 > P 
Fig. 1. Equation of state of the asymmetric two-dimensional Coulomb gas with Z 1 =4,  

Z 2 = -1 .  
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3. S H O R T - R A N G E  PAIR C O R R E L A T I O N S  

The behavior of the pair distribution functions g~(r) in classical 
systems is generally accepted to be dominated by the Boltzmann factor of 
the pair potential, exp[-v~a(r)/kBT], in the limit r ~ 0 .  (~9) For the two- 
dimensional Coulomb gas this would imply 

g~(r) r -0  (26) 

The divergence of the pair correlations between oppositely charged ions is 
in fact the salient feature, particularly near the critical coupling Ft = 
2/]Z1Z2], where pair formation becomes dominant, The prefactors C,~ in 
Eq. (26) can be related to a free energy difference. (2~ Focusing on a pair of 
ions labeled 1 (of species :~) and 2 (of species p), we split the total potential 
energy of the Coulomb gas into two parts, according to 

VN(rl, r2 ..... rN) --= v,~(r12 ) -b mN(r I , rz ..... rN) (27) 

where W N is a regular function of the arguments r~ and 1" 2 as r~2= 
Ir~ - r2I ~ 0. From the standard definition of the pair distribution functions 
it follows that 

c~r lim {exp[v~(r12)/kBT ] g~B(r12)} 
r12~0 

S 2 
= - -  lira [ . . .  f e x p [ -  WN(rl, r2,..., rN)/kBT] d2r3 "'" d2rN 

ON r12~O J 

= ~ u f  "'fexp{--WN(rl,rl ,  r3,...,rN)/kl~T}d2rld2r3"'d2rN (28) 

where use was made of translational invariance of the homogeneous 
plasmas. Now clearly WN(rl, rl ,  r3,..., rN) is the total potential energy of a 
system made up of N - 2  ions of both species located at r3,..., rx, and of a 
single ion of charge (Z~ + Z~)e at rl.  The integral appearing in the last line 
of Eq. (28) is then precisely the configuration integral for that system, 
which we shall write as QN ~(1, N - 2 )  in an obvious notation. If 
F~x(1, N - 2 )  denotes the corresponding excess Helmholtz free energy 
--kBTln[QN_I/SN-1], C~ takes the final form 

SQN_I(1, N - 2 )  QN_I(1, N-2) /S  x-~ 
CaB = QN(O, N) - QN(O, N)/S N 

= exp{ - [F~(1, N -  2) - F~X(0, U)]/kB T} (29) 
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This general result is particularly transparent in the symmetric Coulomb 
gas. Consider first the case of C~2. Since Z~ + Za = 0 in the symmetric case 
the composite particle at r~ has zero charge and hence does not contribute 
to the excess free energy, so that 

C~2 =- exp{ - [ /~X(N- 2) - F~X(N)]/kB T} 

= exp(/~eX/kB T) (30) 

where /~e~ is the excess chemical potential of a pair of oppositely charged 
particles. This relation allows us to extract the chemical potential directly 
from the small r behavior of g12(r), a route to thermodynamics which 
proves to be very useful in practice (see Sections 4 and 5). Equation (30) is 
reminiscent of a similar result for fluids of hard-core particles (hard disks in 
two dimensions), (21) but it cannot be exploited in practice in the latter case 
since g(r) is identically zero for r less than the hard-core diameter. 

We next apply the general relation (29) to g l l ( r )=  g22(r) in the sym- 
metric Coulomb gas (Z1 = - Z 2  = 1). The composite particle at r I carries 
now a charge +2e, and it is immediately clear that the free energy 
F~(1, N - 2 )  will be finite only for F<Fc/2= 1; at F =  1 this doubly 
charged ion will collapse with an appositely charge particle, and the free 
energy goes to - 0 %  so that C H =-C= diverges in the limit F--,  1. This 
means that the function yn(r)=exp[v11(r)/kBT] gll(r) is singular a t  the 
origin for F >  1, so that g~l(r) ceases to behave as indicated by Eq. (26) in 
the range 1 < F < 2. 

An explicit computation of the leading power in the small r behavior 
of gn(r),  i.e., the power ~ for which limr_,or-~gn(r)=C, 0 < C < o %  
shows that it can be obtained from the behavior of exp[ - /~Un( r ) ] ,  where 
Un(r) is the potential of mean force between two positive ions (species 1) 
in the presence of a single ion of opposite charge (species 2)(38); the result is 
the following: 

gl~(r) r'~O rr for F <  1 (31a) 

gll(r) r,Zor2 r for I < F < 2  (31b) 

The weaking of the short-range correlations between charges of the same 
sign for F >  1 is a manifestation of pair formation at low temperatures: the 
total charge of a tightly bound pair of oppositely charged particles being 
zero, a third ion can come very close to the homologous ion of the pair, 
since the electric field of the latter ion is effectively screened by its partner 
of opposite charge. 
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The extension of the result (31) to the dissymmetric case is 
straightforward; for integer z = [Z1/Z2[ it is found that 

g22(r) r~'O /~F F <  1/Z 

r 2 - (2z-  l )f  1 / z<F<2/z  (32a) 
r--~O 

For g~(r) the situation is more complicated since the gradual weakening of 
the correlations between two "polyions" involves an increasing number of 
intermediate "counterions." Thus we expect z successive changes of the 
small r behavior of gil(r) in the range 1/z < F< 2/z, of the form (39) 

r r~2, F < l / z  g11(r) r~o 

2 2 
r~O~ r2m+[z2 (1/2)m(4z+i--m)]F., 2 z - m  + 1 < F < 2 z  - m  

(1 ~<m~<z) (32b) 

An interesting implication of Eq. (32a) is that g22(r) will actually diverge, 
as r ~ 0, whenever F >  2 / (2z- ) ,  due to the strong clustering of negative 
"counterions" around a highly chaffed "polyion" (polycondensation). 

The short-range behavior of the direct correlation functions c~(r) can 
be deduced from Eqs. (31) and (32) via the OZ relations. Using the 
elementary properties of Hankel transforms, we find for the symmetric case 
(z = 1) in k-space 

c11(k) k ~  ~ / l l ( k ) ~ k - 2 - r '  r < 2 / 3  

k2~  [:if2(k)~k -4+2r, 2/3 < F <  2 (33a) 

a,2(k)k~ ~ ,~2(k)~k -2+r F < 2  (33b) 

and similarly, for the ~a = B ~ -  ~ "  

~u(k) k ~  ~22(k) ~'k-4+2r, 

~2(k) k ~ / ~ n ( k ) / ~ 2 ( k ) ~ k  -4, 

k~ov 2 

F <  2 (34a) 

F < 2 / 3  

2 / 3 < F < 2  (34b) 
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Returning to r space, we conclude that c12(r ) exhibits the same singularity 
as gt2(r) at the origin, while clt(r) becomes singular (behaving like r 2-2r) 
when F > 1. Similarily we find that 

~11(r) = hll(r) - cu(r) ~ ~o r2. 2r (35a) 

712(r)=h12(r)-c12(r) ~ o  r2, F < 2 / 3  

... r 4 3r, 2 / 3 < F < 2  (35b) 

so that 7H(r) becomes singular when F >  1, while ~12(r) becomes singular 
when F >  4/3. These singularities will have important implications in the 
next section. Equations (33)-(35) can be casily generalized to arbitrary z. 

4. A P P R O X I M A T E  THEORIES OF PAIR STRUCTURE 

We now turn to the investigation of a number of approximate theories 
for the explicit calculation of the pair distribution functions, of the internal 
energy [via Eq. (20)1 and of the chemical potential [via Eq. (30)3 of the 
two-dimensional Coulomb gas. The simplest of these theories is the mean 
field Poisson-Boltzmann (PB) theory, which supplements the exact 
relation (21) by the approximation 

g~(  r ) = exp { - Z ~ eO ~( r )/k e T} (36) 

This amounts to replacing the potential of mean force by the product 
Z~e0~(r), and hence neglects correlations between particles in the 
polarization "cloud" surrounding particle 7. Since the Coulomb potential is 
the Green's function for the Laplace operator, the PB pair distribution 
functions can be cast in the integral form 

g~(r) = exp - v~(r) + ~ n~h~(r) �9 v~(r) (37) 
7 = 1  

where �9 denotes a convolution product. Equation (37) will be useful below, 
but for practical calculations, the differential form of the PB equation is 
better suited. Combining Eqs. (21) and (36), and making the change of 
variables y = In(r/a1), cI)~(y)= ~P~(r)/e, we obtain the differential equations 

qb"(y)=2ze2Y{exp[Fqb~(y)] - e x p [ - F z ~ b ~ ( y ) ] }  (38) 
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which must be solved, subject to the boundary conditions 

lira ~b~(y)=0 (39a) 
y ~  +-oo 

lim ~'~(y)= -Z~,  ~ = 1, 2 (39b) 
y ~  --co 

Since ~b~(y)_~-Z~y as y ~ - 0 %  the r.h.s, of Eq.(38) behaves as 
e x p [ y ( 2 - F z ) ]  in that limit, so that the boundary condition (39) can no 
longer be satisfied for F >  2/z, which corresponds precisely to the collapse 
temperature (10). 

The PB approximation is internally consistent only in the symmetric 
case (z= 1). For z r  1, one finds Z1q~2(y) ~ Z2q~l(y), and hence according 
to Eq. (36), g12(r) r g21(r). Among other defects, this inconsistency leads to 
two different estimates of the compressibility. According to Eqs. (24) and 
(13) the latter quantity can be indifferently expressed as 

n k B T ) { T = X l  S l l  ( 0 )  3 1 2 ( 0 )  
x----~ + x2 - -  

XlX2 

= 1 + 2  [ h l l ( x ) + h l z ( X ) ] x d x  (40a) 

o r  

n k B T X T ~ X 1  - 
s21(o) s22(o) 

+ x 2 - -  
X I X  2 X~ 

= 1 +2z [h21(x)+h22(x)]xdx (40b) 

Both expressions can be explicitly evaluated by an integration by parts and 
use of Eqs. (36), (21), and (39b). The result is 

nkBT)~r= 1 + (F/4)z 2 (41a) 

nkBTZT= 1 + F/4 (41b) 

which should be compared to the exact result (24) 

nlcBTzT= [1-- ( r /4)z]  1 (42) 

Only for the symmetric case (z= 1) do both expressions (41) agree; as 
expected the discrepancy with respect to the exact result (42) increases with 
F. 
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Numerical solutions of Eq. (38) are easily obtained by a standard 
Runge-Kutta method. The internal energy follows then directly from 
Eq. (23). PB energies for the symmetric Coulomb gas (z = 1) are listed in 
Ref. 11 and in Table I, while some values for the asymmetric case z = 2 are 
given in Table II. Least-squares fits to the calculated energies near 
F = F c =  2/z show that the PB energy diverges logarithmically at the 
collapse temperature, so that the specific heat diverges like ( T -  Tc)-1; this 
mean field value ~ = 1 of the "critical" exponent should be compared to the 
expected value ~ = 2. (6,8) Finally, in the symmetric Coulomb gas it is easily 
seen from Eqs. (23), (30), and (36) that the excess chemical potential of an 
ion pair is exactly twice the excess internal energy per ion. This estimate of 
/~ex is clearly not consistent with the value which would be obtained by 
thermodynamic integration of the excess internal energy. 

Linearization of Eq. (38) leads directly to the familiar Debye-Hfickel 
result: 

~9~(r) = Z~eKo(kmr) (43) 

where K0 denotes the zeroth-order modified Bessel function of the second 
kind and km is the Debye wave number defined in Eq. (18). Equation (23) 
yields directly the reduced excess internal energy per particle: 

u*~=f lU~)H-  N 4~n k2 [In ( ~ - ~ )  + 71 (44) 

where 7 is Euler's constant; Eq. (44) should be compared to the 
corresponding three-dimensional result U*H = fiU~H/N = --k3D/(8~n). 
Equation (44) gives the correct weak-coupling ( F =  0) limit of the energy. 
As can be seen from Tables I and II, UDU deviates rapidly from the 
corresponding PB values as F increases; in particular UDH is everywhere a 
continuous function of F >  0, so that Debye-Hfickel theory "misses" the 
collapse, as a result of the linearization. 

It is well known that the DH approximation is equivalent to making 
the RPA assumption: O~(k)= 0 in Eq. (19). Many improvements over the 
RPA have been suggested in the literature. One, which has been widely 
applied to Coulombic systems, is the STLS approximation. ~22) For the 
symmetric ( z - 1 )  plasma this approximation leads to the following 
expressions for the short-range part of the direct correlation functions: 

2 k 

~l(k)-= k~ f ~, ( k"k '  dk' (45) 2~nk 2 Jo "11~ J 

k~ fkhlz(k,)k,  dk' (46) 
~2(k ) = 2rcnk 2 do 
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Table I1. Excess Internal Energy of the Asymmetric Coulomb Gas (Z1 = 2, 
Z2=  -1  ) in the Debye-H~ckel and Poisson-Boltzmann Approximations 

u = U~X/Ne 2 

F DH PB 

0.1 0.2275 0.2246 
0.5 -0.5772 -0.7140 
0.75 -0.7799 - 1.3139 
0.9 -0.8711 -2.0870 
0.95 -0.8981 -2.7011 

It is easily verified that these closure relations combined with the OZ 
relations (16) entail an unphysical singular behavior of g11(r) at the origin, 
for F >  1, which is induced by the corresponding (physical) singularity in 
g12(r)~,r -r .  For F <  1 we obtained numerical solutions of the coupled 
STLS and OZ equations by a standard iterative procedure in k-space; 
some results for the energy are compared in Table I to the predictions of 
other theories. The STLS compressibility is easily derived by combining 
Eqs. (16), (17a), and (24) with the k ~ 0  limit of Eqs. (45) and (46); the 
result is 

nkBTxr= [1 - F/2] -1 (47) 

which is identical with the corresponding STLS results for the two-dimen- 
sional one-component plasma. (23~ Note that, contrarly to the PB 
approximation for the symmetric Coulomb gas, STLS theory does not 
predict the correct small-F behavior of the exact compressibility (24). 

Similarily one can easily check that the familiar Born-Green-Yvon 
integral equation leads to divergent integrals for F >  1. More interesting is 
the failure of hypernetted chain (HNC) theory, which is generally accepted 
as being the most accurate of the standard integral equations for Coulom- 
bic systems. (24) HNC and PB theories are in fact intimately related, (25/since 
the former amounts to replacing the bare Coulomb potentials v~(r) by the 
"renormalized" potentials - k e  Tc~(r) in the convolution product appear- 
ing in the PB approximation (37), in order to account for correlations. 
Using the OZ relations (16) and the definition 7 ~ = h ~ - c ~ r  the HNC 
closure reads for the symmetric Coulomb gas 

g~r = exp [ - v~(r)/k8 T + ?~B(r) ] 

= (L)~-  l'~+~r exp[,~B(r)] (48) 
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Focusing on gll(r), it is clear that (48) is incompatible with the small-r 
behaviour described by Eqs. (31) and (35a) when F >  1, so that the HNC 
equation admits no solution for 1 < F < 2. This can be traced back to the 
singular behavior of cH(r) in that range. It is interesting to note that the 
Percus-Yevick (PY) closure, which amounts to linearizing Eq. (48) with 
respect to 7~, does not lead to any inconsistency for correlations between 
ions of the same species, but becomes inconsistent for opposite ion 
correlations when F>4/3 .  But it is well known that PY theory is not 
applicable to Coulombic systems, because it does not lead to screening 
(failure at large r). 

We have obtained numerical solutions of the HNC equation for the 
symmetric Coulomb gas, for F <  1, by adapting the procedure used earlier 
for the two-dimensional one-component plasma. (26'27) The resulting 
energies and chemical potentials are compared to the predictions of other 
theories in Table I. The compressibilities calculated from the various 
theories are compared to the exact result (24) in Fig. 2. In Fig. 3 we com- 
pare the HNC and PB results for the two pair distribution functions gl~(r) 
and gx2(r) at F =  1, to the Monte Carlo data to be discussed in the next 
section. While the HNC and PB pair distribution functions are in 
reasonable agreement, they differ significantly from the "exact" Monte 
Carlo results at small r; this leads in particular to a poor estimate of the 
chemical potential via Eq. (30). 

5. MONTE CARLO STUDY OF ION PAIRING 

It was shown in the preceding section that all standard approximation 
schemes for Coulombic systems fail when applied to the two-dimensional 
Coulomb gas, for couplings F >  1 (or F >  1/z in the asymmetric case), with 
the exception of Poisson-Boltzmann theory, which yields solutions up to 
F = 2  (or F=2/z). This failure is intimately linked to the (integrable) 
singularity of g12(r), which induces a singularity in cl~(r) and a change in 
the small-r behavior of g~t(r) for F >  1 and of gll(r) and gz2(r) for /~> 1/z. 
We have attributed the unusual behavior of the correlation functions to the 
increasing weight of pairing of oppositely charged ions as F exceeds 1; this 
pairing leads to complete collapse as F approaches the critical value F =  2. 
PB theory cannot give a correct description of this mechanism, since it 
ignores correlations, and hence pairing between ions in the "polarization 
cloud" surrounding any given ion. 

In the absence of any reliable theory in the range 1 < F <  2, we have 
carried out some preliminary Monte Carlo simulations to gain a qualitative 
understanding of ion pairing in a symmetrical Coulomb gas (z = ! ). 

Simulation of the two-dimensional Coulomb gas involves two fun- 
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X 

0.~ O 

| 

> 
O.C) ~.o ~.o p 

Fig. 2. Excess inverse isothermal compressibility X =  1 - ( n k ~ T x r ) -  of the symmetric 
two-dimensional Coulomb gas; 1, STLS result (47); 2, exact result (42); 3, PB result (41); 
dots, numerical HNC results. 

CO 

J > 

o.o 21o 
Fig. 3. Pair distribution functions gll(x) (lower curves) and g~2(x) (upper curves) versus 
x=r/a~ for the symmetric two-dimensional Coulomb gas at F =  1. Solid curves, Poisson- 
Boltzmann theory; dashed curve, HNC theory (ga2 in this approximation is indistinguishable 
from the Poisson-Boltzmann result); dots, Monte Carlo results. 
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damental difficulties. The first of these is the well-known problem of 
correctly handling the infinite range of the Coulomb potential when 
simulating a small periodic sample. For strong couplings (F>I ) ,  this 
problem is adequately solved by summing the interaction between two ions 
over the infinite array of their periodic images (Ewald method(28~). 
However, numerical evidence from Monte Carlo studies on the one-com- 
ponent plasma (2~ and on simple electrolytes ~a% in three dimensions 
indicates that for intermediate couplings (F-~I), the simpler "nearest 
image convention" (where each ion interacts only with the nearest periodic 
image of all other ions) may be sufficiently accurate. We have checked the 
nearest image convention in two dimensions by examining the one-com- 
ponent plasma at K= 2, a case that is exactly soluble/1) Results of three 
Monte Carlo runs are summarized in Table III: the number dependence of 
the computed energy is seen to be relatively weak, and a 5 % accuracy is 
already achieved with N = 100 ions. Since we were essentially interested in 
ion pairing, for which short-range correlations are predominant, we have 
used the nearest image convention in our simulations of the two-com- 
ponent Coulomb gas. 

The second difficulty in these simulations is precisely linked to the 
strong Coulomb attraction between oppositely charged ions when they are 
very close. Although this singularity is formally integrable up to F =  2, the 
corresponding Boltzmann factor diverges as r--+ 0, so that a careful sampl- 
ing of close ion pairs is needed in order to obtain good estimates of ther- 
modynamic properties, like the energy. The difficulty is illustrated by the 
fact that near F =  2, the specific heat diverges as the square of the energy, 
which means that fluctuations in energy become very large in the canonical 
ensemble. 

The main weakness of the standard Metropolis scheme (3~ as applied 
to the present model is that it does not distinguish between tightly bound 

Table III. Number  Dependence of the Monte  Carlo Estimates for the 
Excess Internal Energy of the Two-Dimensional  One-Component  Plasma 

(OCP) at I-=2, Using the Nearest Image Convention ~' 

N N~ u = ue• 2 

64 6250 -0.1545 • 0.01 
100 3000 -0.1525 • 0.005 
196 1500 -0.1505 • 0.003 
oo (exact) -0.1443 

N is the number of particles in  the sample and Nc the number of trial moves per ion 
generated during the runs. The exact result is from Ref. 1. 

822/38/5-6-3 
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and weakly bound ion pairs; the use of a unique maximum trial dis- 
placement does not allow an efficient sampling of configuration space. This 
defect can be partly overcome by reformulating the canonical partition 
function for N/2 positive and N/2 negative ions in terms of N/2 pairs. 
Following the procedure outlined by Stillinger and Lovett, ~3~) all ions of 
opposite charges are paired in a unique way at the beginning of a Monte 
Carlo run. Trial configurations are generated by moving ion pairs in two 
steps: first, the center of mass of the pair is displaced inside a disk (or 
square) of radius A 1 ; next the relative position vector of the two ions in the 
pair is displaced inside a disk (or square) of radius A2. The reformulation 
of the partition function in terms of ion pairs leads to configurational 
restrictions which can be taken care of by introducing "steric hindrance" 
potentials acting between two ion pairs(31); these prevent ion exchanges 
between pairs and are easily incorporated into the Monte Carlo program. 
The advantage of this second procedure (method 2) over the more stan- 
dard algorithm in which ions are moved individually (method I) is twofold. 
First, by adjusting the values of A1 and A2, a more efficient sampling of 
close pair configurations can be achieved. Although we have not attempted 
a systematic optimization in our preliminary Monte Carlo calculations, we 
find, as might be expected, that the ratio A2/A~ should be decreases with 
increasing F in order to achieve a reasonable convergence of the Monte 
Carlo averages. Secondly, method 2 allows an easy and unambiguous 
definition of the distribution function of pair separations, P(r), which is 
quite different from the pair distribution function g~2(r). P(r)dr is defined 
as being the man number of pairs of length falling in the range [r, r + dr], 
divided by the total number of pairs (i.e., N/2). The normalization is such 
that 

fo~ P(r) dr = 1 

The numerical estimate of the function P(r) is not practicable within 
method 1. It must be stressed, however, that methods 1 and 2 are 
equivalent in the sense that they would lead to identical expectation values 
in the limit of infinitely long Monte Carlo chains. 

We have carried out Monte Carlo runs using both methods and two 
sample sizes (N=  100 and N =  196), for F =  1, 1.5, and 1.8. Some of the 
results of these simulations are summarized in Table IV in Figs. 3-6. The 
runs at F =  1 pose no particular problem: there is no significant N depen- 
dence of the results and the Monte Carlo estimates of the energy fall very 
close to (although slightly below) the predictions of PB and HNC theories. 
The difference between the chemical potentials estimated from Eq. (30) are 
much larger, stressing the lack of thermodynamic consistency of the 
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Table IV. Monte Carlo Results for the Symmetrical 
Two-Dimensional Coulomb Gas" 

843 

F N Method N~ u = U~XtNe2 #e• C~sX/NkB f 

1.0 100 1 5000 --0.398 +_ 0.005 
1.0 196 2 3570 --0.400 • 0.01 --0.48 0.8 _+ 0.1 
1.5 100 1 10000 --0.80 _+0.07 --0.98 3.6--+0.4 
1.5 100 2 6800 --0.77 +0.03 --0.86 3.4-+0.4 
1.5 196 2 3500 --0.88 +0.03 --0.90 
1.5 196 2 2000 --0.84 _+0.03 --0.87 
1.8 100 2 10000 --1.45 -+0.1 - 1 . 1 8  >9.5 
1.8 196 2 4500 --1.35 -+0.1 --1.37 

0.74 

0.81 
0.80 

0.84 

"Nota t ion  is as in Table III. /~ex is the excess chemical potential of an anion-cat ion pair, 
estimated via Eq. (30). C~ ~ is the excess specific heat per unit area, estimated from fluc- 
tuations of the internal energy, which are very large as F ~ 2. f i s  the fraction of ion pairs of 
length < a  I . 

approximate theories. It must be stressed, however, that extrapolation of 
the Monte Carlo data r = 0 is delicate, because of the statistical uncertain- 
ties for small r. The distribution of pair separations P(r) is a flat function of 
r, indicating only a relatively weak tendency towards ion pairing at twice 
the collapse temperature. The situation changes dramatically as F is 
increased. At F =  1.5, the P(r) histogram in Fig. 5 exhibits a sharp 
maximum near the origin, followed by a slowly decreasing tail. As expec- 

> 
O0 0.5  t.O 

Fig. 4. gll(x) as a function of x = r/a1 for the symmetric two-dimensional Coulomb gas at 
F =  1.5. Solid curve, Poisson Boltzmann result; dots, Monte  Carlo results; the dashed curve is 
a least-squares fit of the form cx ~ through the MC data, showing the compatibility with 
Eq. (31b). 
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Fig. 5. His togram of pair distances P(x) as a function of x = r / a l ,  for the symmetric 
two-dimensional Coulomb gas at F =  1.5 (dashes) and F =  1.8. Notice the changes of scale on 
the x axis. 
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Fig. 6. A typical equilibrium configuration generated by a Monte  Carlo run on the sym- 
metric two-dimensional Coulomb gas at F =  1.8. + ,  cations; O, anions. 
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ted, this tendency is considerably enhanced at F =  1.8. Meanwhile the frac- 
tion f of pair separated by a distance less than the characteristic interionic 
spacing al 

f = I a~ P(r) dr (49) 
Jo 

increases only moderately with F, indicating that even at F =  1.8, a sizable 
fraction of ions are unpaired on the average. Thus the two-dimensional 
Coulomb gas above F =  1 appears as a mixture of rather closely bound ion 
pairs forming dipoles of variable length, and free ions; the situation is 
clearly reminiscent of ion pairing in electrolyte solutions, and a crude 
calculation based on the classic Bjerrum model is sketched in the Appen- 
dix. 

The presence of an increasing number of very close ion pairs leads to 
large fluctuations in the total energy which are responsible for the large 
statistical uncertainties on the energy estimates quoted in Table IV for 
F =  1.5 and 1.8. Although methods 1 and 2 yield compatible results, we 
observed that the convergence of the statistical averages with the number 
of configurations is rather sensitive to the values chosen for the maximum 
displacements, espcially A 2. In order to minimize the asymptotic variance 
of the Monte Carlo averages, a more efficient sampling algorithm, which is 
better adapted to the delicate ion pair equilibrium, is clearly needed. A 
possible alternative is the "force bias sampling," suggested by Kalos(32); an 
application of this method to the two-dimensional Coulomb gas is being 
planned. 

Although subject to caution, our Monte Carlo estimates of the inter- 
nal energy lie clearly below the Poisson--Boltzmann results. The latter also 
fail to reproduce the characteristic small-r behavior of gu( r )  for F >  1, 
embodied in Eq. (31); despite the large statistical scatter, the Monte Carlo 
data are clearly compatible with this behavior, as illustrated in Fig. 4. 

The predominance of pair formation for F >  1 is easily visualized by 
examining "snapshots" of well-equilibriated configurations generated dur- 
ing Monte Carlo runs. Close examination of a typical example reproduced 
in Fig. 6 shows the existence of a high proportion of close pairs of 
oppositely charged ions, as well as the presence of a few triplets, which are 
the physical original of the "softening" of the correlations between ions of 
the same sign, as explained in Section3 [see Eq. (31)]. More generally 
most ions are gathered in clusters, leaving large portions of the available 
surface blank, so that the plasma appears as highly inhomogeneous on the 
scale of a few interionic spacings. Among the interesting qualitative features 
revealed by these "snapshots" is the filamentary (as opposed to compact) 
topology of the clusters, which is certainly linked to the anisotropic nature 
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of the charge-dipole and dipole~lipole interactions, and the possible 
existence of a percolation threshold depending on F. These interesting 
questions clearly deserve a more detailed investigation. 

6. C O N C L U S I O N S  

Focusing on the symmetric Coulomb gas, we may summarize the main 
results of the present study as follows. Up to F =  1, corresponding to twice 
the collapse temperature, the model behaves essentially as a fully ionized 
plasma, and it pair correlations are adequately described by the standard 
theories of Coulombic fluids.  (24) In the range 1 < F <  2, pair correlations 
are strongly affected by the formation of close ion pairs and larger clusters. 
This mechanism is not correctly handled by the usual tools of the theory of 
ionic liquids3; in particular the nonexistence of solutions of the standard 
integral equations, like the HNC closure, is an obvious symptom of this 
failure to describe the gradual recombination of oppositely charged ions. 
This recombination leads to the singularity of the direct correlation 
function c11(r) and to the softening of the correlations embodied in 
Eq. (31), for F >  1. 

Although the existence of a "chemical" ion-pair equilibrium leads to 
severe ergodicity problems in computer simulations, which are reminiscent 
of similar difficulties encountered in numerical studies of the three-dimen- 
sional "primitive model" of electrolytes or molten salts, (35) our preliminary 
Monte Carlo computations do reveal some very interesting qualitative 
features of the cluster formation. A quantitative understanding of the static 
and kinetic aspects of this purely classical "ionization" equilibrium and 
cluster formation requires more extensive simulations. Further work along 
these lines, as well as an extension to a Coulomb gas with hard cores 
(oppositely charged hard disks), is being planned. 

A C K N O W L E D G M E N T S  

The authors are indebted to J. L. Lebowitz, D. Mac Gowan, and D. 
Nicolaides for useful comments and suggestions. 

A P P E N D I X  

In this Appendix we sketch a very simple calculations of the energy of 
the symmetric two-dimensional Coulomb gas which exploits the idea of a 

3 A similar conclusion has been reached for the three-dimensional "primitive model" of elec- 
trolytes (oppositely charged hard spheres) in a very instructive study of M, Gillan. (34) 
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"chemical" equilibrium between tightly bound ion pairs, and a plasma of 
fully dissociated ions. This idea goes back to Bjerrum's theory of ion pair- 
ing in the "primitive model" of electrolytes (oppositely charged hard 
spheres). (36) According to this idea it is assumed that a fraction ~ of the 
ions are paired into aN/2 tightly bound pairs, while the remaining N(1 - e )  
ions remain free. If the interaction between the pairs, which form neutral 
dipoles, and the free ions is neglected, the total partition function factors 
into 

=~U = 5)pair o')ion (A.  1 ) 

~vai~ is evaluated by assuming that the pairs are mutually independent, and 
are of maximum length (anion-cation spacing) R: 

where 

1 ~pair = qN~/2 (A.2) 
N~ (N~/2)! (2~22) u~ 

= I f  d2rl der2 e x p [ - F l n ( r 1 2 / L ) ]  q 
~r  12<R 

27zSL r 
_ R 2 r (A.3) 

2 - F  

is the partition function of a single pair, S is the total area of the system, 
and 28 is the thermal de Broglie wavelength for ion species/L The partition 
function for the N ( 1 - ~ )  free ions is calculated in the Debye-Hiickel 
approximation (44). The resulting total excess free energy is given by 

F x= - k B T l n  QN 

= ~ i ~  + (1 - ~) F~du (A.4) 

where Qx is the configuration integral [cf. Eq. (5)]. The dimensionless 
excess free energy per ion finally reads 

F x  

f ( o~, [') = Ne 2 

4-1" 
= (1 -- ~) ln(1 - :t) - - ~  + ~--~ in 

+ ~ - - ~ [ l n F + 2 7 - 1 ] + ~ F [ 1  

- (Z-_r)  In \ ~ } j - ~  (A.5) 
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For a given F this free energy is minimize with respect to the "chemical" 
composition parameter ~, leading to the equation 

2 ( R ]  ~-~ 
- -  e - -  7F 

~X(1 -- ~)(r-4)/2 Fr/2(2-- F) 2al/  (A.6) 

For any choice of R, a ~ 1 when F--, 2 as expected. The precise value of R 
is, however, still at our disposal. Clearly R cannot be varied freely to 
minimize the free energy, since the latter decreases indefinitely with increas- 
ing R as a consequence of the factorization approximation (A.1), which 
leads to increasing double-counting of pair interactions as R increases from 
zero. In order to recover the correct Debye-Hfickel limiting law, R must 
vanish when F ~ 0. For nonzero values of F we have determined R/al by 
requiring that linearization of the Poisson-Boltzmann equation be justified 
for all r >  R. According to Eqs. (43) and (36) this leads to the criterion 

FKo(koR ) = FKo((4F)I/2 R/al) ~ 1 (A.7) 

For F <  1, the argument of the Bessel function turns out to be quite small, 
so that an explicit solution of Eq. (A.7) can be obtained by replacing Ko(x) 
by its small-x limit, Ko(x)~- - l n ( x / 2 ) +  7, with the result 

R 
- -  = F ~/2 e x p ( - 7  - l /F)  (A.8) 
a l  

Since for F >  1, ~ becomes less sensitive to the precise value of R/a1 [cf. Eq. 
(A.6)J, we have kept the simple expression (A.8) up to F =  2, so that ~ is 
the solution of the equation 

~(1 - 0~) ( r - 4 ) / 2  = 1.714 - -  
e - -  2 I F  

r (2-  r) 
(A.9) 

Equations (A.5), (A.8), and (A.9) determine the free energy of the Coulomb 
gas for each value of F < 2. The resulting internal energy u follows by dif- 
ferentiating with respect to F: 

u(F) = In ~ 2F 2 2 - F 4 

l(a ) x [In r + 2 7 + l n ( l - ~ ) ] - ~ l n  (A.10) 

This formula interpolates between the low-F Debye-Hiickel limit and the 
expected (2 - F ) -  1 divergence due to pair collapse when F ~ 2. Results for 
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Table V. Predictions of the Bjerrum Model for the Symmetrical 
Two-Dimensional  Coulomb Gas a 

849 

F R/a1 :~ C~Mc u = U~"/Ne 2 upB UMc ,ueX/e 2 ~ c / e  2 

0.1 8 x 10 -5 1.8 x 10 -8 +0.287 +0.286 0.574 
0.5 0.108 0.039 -0 .246  -0 .138  -0 .312  
1 0.207 0.174 0.21 -0 .467  -0 .392  - 0 . 4 0  -0 .776  
1.5 0.235 0.351 0.42 -0 .798  -0 .697  - 0 . 8 0  - 1.082 
1.8 0.240 0.588 0.54 - 1.979 - 1.086 < - 1.4 - 1.382 
1.9 0.241 0.746 -4 .289  - 1.394 - 1.636 
1.95 0.241 0.857 -9 .176  -1 .712  -1 .924  

- 0 . 4 8  
- 0 . 9  
- 1 . 3  

~c~ is the fraction of ions that are bound in pairs of length < R  [Eq. (B.6)] and C~MC is the 
corresponding Monte  Carlo estimate, ueB and UMC are the Poisson-Bol tzmann and Monte  
Carlo values of the excess internal energy per ion. 

the energy and the excess chemical potential per ion pair, ,Uex/e2 = 2 f - -  1/2, 
are compared to Poisson-Boltzmann and Monte Carlo results in Table V. 
The Bjerrum model is a priori most accurate in the two limits F ~  0 and 
F ~  2. In view of the simplicity of the calculation, the results can be con- 
sidered as satisfactory in the intermediate coupling range as well. The 
model can be formalized and extended along the lines of the work of Hr 
and Olaussen. (37) 
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